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Wave Chaos in Quantum Systems with 
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We study perturbations /4 of the quantized version ~O0 of integrable 
Hamiltonian systems by point interactions. We relate the eigenvalues of/~ to 
the zeros of a certain meromorphic function 4- Assuming the eigenvalues of H0 
are Poisson distributed, we get detailed information on the joint distribution of 
the zeros of ~ and give bounds on the probability density for the spacings of 
eigenvalues of /~. Our results confirm the "wave chaos" phenomenon, as 
different from the "quantum chaos" phenomenon predicted by random matrix 
theory. 
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1. I N T R O D U C T I O N  

Q u a n t u m  systems exhibiting chaotic behavior  ("wave chaos," "quan tum 
chaotic systems") have been intensively studied during the last 10-15 years. 
The basic question concerning the relation in behavior  of classical ergodic 
systems and quan tum systems was already raised by A. Einstein in 1917. 
Also, in the newer investigations one basic question has been to what  
extent the quan tum  mechanical  systems reflect the chaotic behavior  of  the 
corresponding classical counterparts.  Numerical  and experimental evidence 
indicates that  a typical chaotic quan tum system has local spectral statistical 
properties (distribution of eigenvalues) which are similar to those of  certain 
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370 Albeverio and ~eba 

statistical ensembles of matrices, described by "random matrix theory" 
(RMT) (see, e.g., refs 8 and 11 for the latter theory, and, e.g., refs. 5 and 6 
for the evidence). More particularly, one studies the behavior of the 
probabilities ~ ( k )  - l (A; (x ) ) / x ,  as 0 <~ x ~ oc, A~(x) =- {E<<, x l(E, E +  c) 
contains k eigenvalues of the quantum (positive) Hamiltonian }, k e N ~ {0 }, 
c > 0, l being Lebesgue measure. (13) The behavior of ~z~(k) as x --* oe found 
for these "chaotic systems" is in sharp contrast wih the one, based again on 
numerical and experimental evidence, of the local spectral statistics ~ ( k )  of 
systems which are the quantized version of classical integrable systems; in 
fact, in the latter systems the above evidence is for a limit Poisson distribution 
~C(k)=eC~ (for a certain positive constant p). Such a Poisson 
distribution expressing "absence of level repulsion" is very different from 
the distributions ("Wigner distributions") found in random matrix theory 
(which yield "level repulsion") and this has been taken as a basic tool for 
recognizing whether a given quantum system has a chaotic or rather 
integrable classical underlying counterpart; see, e.g., refs. 7 and 9. 

Unfortunately, the distinction is not yet sustained by suitable 
mathematical results. Let us mention, however, work which provides some 
discussion of the problems. Berry (3'4~ has heuristically shown that in the 
limit of very small level spacing, quantum mechanical systems coming from 
nonintegrable classical systems have energy eigenvalues distributed 
according to the prediction of RMT. 

As for integrable systems, the distribution of eigenvalues is known in 
several particular cases, and shown to be of the Poisson type (see, e.g., 
ref. 7); however, it is still an open question whether this holds generically 
(see also the discussion in ref. 13). 

In the last 10 years it has become on the other hand more and more 
clear, on the level of experimental and numerical evidence, that the 
correspondence between quantum chaotic systems and the RMT cannot be 
too precise. In fact, the existence of classical periodic orbits strongly 
influences the quantum systems, an influence which cannot be detected by 
the RMT approach. 

Usually the quantum chaotic systems which are investigated are 
obtained by quantizing classical chaotic systems. We introduce, following 
Seba, (1:) a new type of system exhibiting "wave chaos," and constructed 
mathematically on the basis of a physical intuition. These systems will be 
shown to have a typical wave-chaotic behavior, and are on the other hand 
simple enough to be handled mathematically. We will calculate the corre- 
sponding joint level distribution and show that it differs from the one 
obtained in the RMT approach. Using it, we will nevertheless show the 
existence of the "linear level spacing repulsion" for small spacing. 

The paper is organized as follows. In Section 2 we define a family of 
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quantum Hamiltonians Ho as perturbations by a point interaction of 
strength O of the quantum Hamiltonian /t0 corresponding to a two- 
dimensional completely integrable classical system. We give the resolvent of 
/~o and show that the eigenvalues of / to coincide with the zeros of a 
certain function A(z,  O) or, equivalently, for O r 0, the zeros of a certain 
meromorphic function z --, ~(z, O). The eigenvalues E, of/~o are poles of 
r O). In Section 3 we assume that the eigenvalues En of/~o are Poisson 
distributed. We study a finite sum approximation'~N(z) of the function 
~ ( z ) - - ~ ( z , x ) ,  converging pointwise as N ~ o o  to ~(z), and give an 
explicit formula for the joint distribution of the zeros (roots) of IN (hence 
obtaining information about the eigenvalues of Ho). We observe that this 
distribution differs from the one expected by RMT. In Section 4 we show 
that, assuming again that the eigenvalues E, of Ho are Poisson distributed, 
the probability P(s)  that some of the spacings between two successive zeros 
of the above function ~(z) giving the eigenvalues of the perturbed 
Hamiltonian / ~  belong to [s, s + ds] satisfies P(s) >1 se s and s <<. P(s) <<. 
(9/4)s as s$ 0. The latter estimate is in agreement with the prediction of 
RMT, whereas for s--, oo one gets disagreement with the latter prediction. 

2. C O N S T R U C T I O N  OF THE Q U A N T U M  H A M I L T O N I A N  

We start with an integrable classical system with Hamiltonian 
Ho = Ho(p;q ) ;  p and q are the classical momenta and coordinates. Because 
of integrability, the phase-space trajectory of this system is confined on 
invaiant tori and we can introduce the action-angle variables (I; m).(2,i0) 
Using the coordinates (I; m), we can rewrite the Hamiltonian as 

H0 = Ho(I) (2.1) 

(it does not depend on the angular coordinates ~o). One can quantize the 
system by the "EBK method" to obtain the corresponding quantum 
Hamiltonian as 

Ho = Ho(I) in L2(TI x . . .  x Tk) (2.2) 

(the periodic square-integrable function over T1 x . . .  x irk, with Haar- 
Lebesgue measure, the Tj, j =  1,..., k, being tori identified with [0, 2~]). 
Here ~ are the canonical self-adjoint operators 

~ = i - -  (2.3) 8e~j 

822/64/1-2-24 
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defined with periodic boundary conditions on the domain 

D @ ) =  { f e L 2 ( T j ) ; f e A C ( T j )  and f(0)=f(2~z)} (2.4) 

AC(Tj) are the absolutely continuous complex-valued functions on Tj. [j 
has discrete spectrum with eigenvalues n j, nj e 2. The eigenvalues of H 0 are 
given by real numbers 

En~:...;,~k=Ho(nl,n2,...,nk); rt 1 ..... n k e Z  (2.5) 

with Ho(nl, n2,..., nk) computable by substituing in the expression for Ho(l) 
the action variable I~ by the value nj. Let us now order the numbers En~...;nk 
with respect to their magnitudes. We will denote these ordered numbers 
a s  Ei, 

Ei + 1 >1 Ei 

As explained in Section 1, it is believed that these ordered numbers Ei 
"form (for a generic integrable system) a Poisson process" in the sense that 
the quantity described in Section 1 is a Poisson distribution (see, for 
instance, ref. 13). 

In classical mechanics by perturbing integrable systems by a perturba- 
tion which is strong enough, all the invariant tori Tj are destroyed and the 
phase-space trajectory becomes "chaotic" (the intermediary situation of 
small perturbation when some of the tori are destroyed and some still exist 
is described by the KAM theorem; see, e.g., refs. 2 and 10). As mentioned 
in the introduction, in quantum mechanics one expects a transition from 
the Poisson level statistics to the Wigner statistics when increasing the 
strength of the perturbation. Our aim here is to show that this transition 
occurs indeed when perturbing the integrable Hamiltonian H o by a "point 
interaction." This kind of perturbation has been studied intensively in 
recent years; see, e.g., ref. 1. 

We shall suppose here the system to be two-dimensional in order to 
simplify notations, but all results hold also for higher dimensions. The 
Hilbert space is L2(T), with T= T1 x T2 a two-toms. The perturbed 
operator H o is obtained formally from/~o by adding to Ho a delta function 
of (renormalized) strength O (point interaction of strength O, in the sense 
of ref. 1). It will be described as a certain self-adjoint extension of the 
symmetric operator Ho,0, obtained by restricting Ho to the domain 

Do = {feD(I2Io);f(O, 0)=0}  (2.6) 

The deficiency indices of H0,o can be investigated using the method of 
Krein, as adapted by Zorbas (14) (see, e.g., ref. 1 for a more general description 
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of these techniques). Let us now make the following assumptions about the 
Green's function of the operator Do: There exists a measurable function 
G(co, co', z) on Tx Tx C which satisfies 

((Do-Z) = f  G(co, co', z)-f(co')  do)' (2.7) l f ) ( c o )  
T 

for all f ~  LZ(T), I ra (z) r  0 (this is, e.g., satisfied if Do is the negative of the 
Laplacian A on T). Following ref. 14, we have the following result. 

k e m m a  1. (i) Assume that G(-, 0, _+ i) • LZ(T). Then the deficiency 
indices of Ho, o are equal to (0, 0). 

(ii) Assume G(.,0, 4-i)~LZ(T). Then Ho, o has deficiency indices 
(1, 1) and the deficiency subspaces K -+ are 

K -+={f ; f ( co )=c .G(co ,0 , -T- i ) ; cEC}  | 

It is therefore important to check whether the Green's function G(co, 0, _+ i) 
is quadratic integrable. This can, however, be done by writing the Green's 
function in action-angle representation, 

(Ho(?l ; ? 2 ) -  z ) - '  (2.8) 

which leads to the following criterion: 

1 
G(,,O, +_i)~L2(T)~ ~ Ho(n,m)2+l 

n,  m 6 27 

< oe (2.9) 

where Ho(I1;I2) is the classical Hamiltonian given by (2.1). 
Let us now suppose that the Green's function G(co, 0, _+ i) is quadratic 

integrable, i.e., (2.9) holds (again this is, e.g., satisfied if Ho = -A) .  In this 
case the deficiency indices of Ho.o are equal to (1, 1) and we can construct 
the one-parameter family Do, O e [0, 2~), of its self-adjoint extensions. 

T h e o r e m  2. The self-adjoint extensions of Ho, o are defined by the 
operators 

Do = Ho(?l, ?2) 

o n  

D(Ho) = {kg= ~ +  c .G(co, O, i ) - c  .e i~ .G(co, O, - i ) ;  ~eDo; ceC; O~[0, 2~)} 

The family Ho represents the perturbed Hamiltonians; O is the corresponding 
coupling constant (strength of the point interaction). O = 0 corresponds to 
free Hamiltonian D o =o = Do; O = zc corresponds to infinite coupling. 

For the proof see ref. 14. 
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The eigenvalues of /~o can be most easily investigated through the 
Krein formula, which leads to the following result. 

T h e o r e m  3. Let (/~o; O ~ [-0, 2n)) be the self-adjoint extensions of 
Ho, o. Their resolvents are given by the kernels 

( / ~ o - z )  1 (co, co') 

=(Ho-z)-l(e),e)')+)~(z,O)[G(e),O,z))(G(e)',O,z)[, I m z r  

with 

2(z, O ) : ( 1 - e  i~ [ ( i - z ) f r d o ) '  G(e)', O,z).G(e)', O, i) 

+ ei~ + z) frde)' G(e)', O, z).G(e)', O, - i ) ]  

with 

for all f~LZ(T).  

It is clear that the eigenvalues of/]ro coincide with the poles of the 
function 2(z, O). The poles of 2(z, O) coincide with the zeros of the 
function A(z, O): 

1 
2(z, O)=  (1 - e  g~ - -  (2.10) 

A(z, O) 

A(z, O) = ( i -  z) f de) G(e), O, z) G(e), O, i) + d~ + z) 
T 

x f de) G(e),O,z)G(e),O,-i) (2.11) 
T 

Using the resolvent equation, for Im zl r 0, Im z2 r 0, 

( /~0__ Zl )  1__ ( /~0__Z2)--1  : (Z 1 _ Z 2 ) ( I ~ I o _ _ Z I ) - I ( I ~ I o _ Z 2 )  1 

we get, for Im z r 0, 

(z+ i) i de) G(co, o)1, z). G(e), oo2, Ti) = G(e)l, e)2, z) - G(e)l, e)2, -Ti) 
T 

and 

IG(e), 0, z)) (G(e)', 0, z)l f )(e))= G(e), 0, z) f G(e)', 0, z)f(e)') de)' 
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which together with the decomposition of G(co, co', z), obtained from the 
spectral representation of/]ro, 

e i n ( ~ o l  cc, i ) e i m ( c o  2 - -  oo~ ) 

G(co, co', z)= 2 (2.12) 
n ,  m En, m - -  Z 

I-recalling that En, m a r e  the eigenvalues of Ho; see (2.2), (2.5)], leads to 

( -1  Enm sin O 1 ") 
A(z' O ) = ( 1 - e i ~  ~ \E,~---  z § ~ ~ (2.13) 

n , m  En, m+l  1-COSOEZ, m + l /  

Hence for O ~ 0 the zeros of the function A(z, O) are equal to the zeros of 
the meromorphic function ~(z, O ) -  (2(z, 0))  -1, 

, ,z ,o,  sin O 1 
" = - / - ~  1 - c o s  O Enm+l - z  En, m+ l + 2 n , m  , , 

For O = ~r (infinite coupling) we get 

1 En, m ) 
~(z)-  -~(z, r~)= Z E,,m _ z E~, m + f 

n , m  

(2.15) 

or in the one-index notation (with ordered eigenvalues Ei) 

E, L-z E 2 + 1  (2.16) 

We remark that z ~ ( z ,  O) is monotone increasing in all intervals 
(E;, Ei+ 1), Ei ~> 0. Hence we have the following result. 

P r o p o s i t i o n  4. For O :# 0 the eigenvalues of Ho coincide with the 
zeros of the meromorphic function ~(z, O) given by (2.14). For O =0, Ho 
coincides with the free Hamiltonian H0. For O =~  the function ~(z, O) 
simplifies according to (2.15) or (2.16). En, m are the poles of ~(z, O), for 
O # 0 .  

For simplicity in the following we shall only discuss the case O = ~r. 
We shall denote the eigenvalues of the corresponding Hamiltonian H .  by 
zn. We shall assume, according to the hypothesis discussed in Section 1, 
that En, m are Poisson distributed. From this information we shall draw 
conclusions on the zeros zn of d(z). 
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3. D ISTRIBUTION OF ZEROS A N D  E IGENVALUES 
OF THE H A M I L T O N I A N  

Let us now investigate the distribution of zeros z,, of the function i(z)  
given by (2.16) in more detail, assuming that the poles En are Poisson 
distributed. We first replace the function {(z) by its finite sum approxima- 
tion IN(Z), 

~N(~)= )~,,~- ~ E~+I 

IN(Z) converges pointwise to {(z) as N ~  ~. 
Let zl,... , z~ denote the ordered roots of IN(Z): IN(Zi)=0, Zi<~Z,+ ,. 
Our aim is to find their joint distribution provided the numbers 

E,... EN are given by a Poisson process. 
We express ~N(Z) a s  

with 

~N(Z)=~N(Z)--C N (3.2) 

N 1 

~N(z)= ~ E.-z n ~ ]  

CN = E 2 ~- l 
n = l  

The function can be now expressed as 

Pl(z) 
~N(Z) -- 

P2(z) 

(3.3) 

(3.4) 

where P~(z), P2(z) are polynomials of the Nth order, 

N 

p2(z) = ~ (Ei- z) 
i = i  

P , ( z )  = ( E j -  z)  - c ~ e ~ ( ~ )  
i 1 j = l  

(3.5) 

The distribution of roots of the function ~-N (Z)  coincides with the distribution 
of roots of the polynomial Pl(z). Let us write Pl(Z) as 

P I ( Z ) = - a l Z N  + a 2 z N - - I  + " "  - } - a N z + a N +  1 (3.6) 
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with 
a l  = - C N ( -  1) N 

a 2 = ( - - 1 )  N-~ [--CN(El -k E2 -k . . . -kEN)q-N ] 

a 3 = ( - 1 )  N-2 --CN E, + ( N - 1 ) ( E I + E 2 +  "" +EN) 
--i < j 

: (3.7) 

ak=(--1)N+l g [ - - C N (  2 EilEi2...E,k) 
il <: i2 < . . .  <i  k 

i l<i2< " <ik I 

Decomposing on the other hand Pl(z) as 

PI(z) = al(z - -  z 1 ) ( z  - -  z 2 )  - �9 �9 ( z  - -  Z N )  ( 3 . 8 )  

and comparing the corresponding coefficients, we get equations connecting 
the roots z - (Zl . . .  ZN) and the poles E - (El ... EN), 

Fi(z, E ) =  0, i =  1,..., N (3.9) 

with 
N 

F I ( z  ; E ) = E  1 - k E  2 - k  . . .  - k E  N - - ( z  l - k z  2 - k  - - .  - k Z N ) - - C ~  

: (3 .10)  

E , , " ' E , k +  . . . .  

i I . . . . .  i k \ C N  J 

x( z 0 
il < . . .  <ik_ 1 / ~ i l  < .. .  <i  k 

Solving this system of equations, we obtain the roots zi as functions of Ei, 

z ,  =- a i ( E 1 . . .  E N )  ( 3 . 1 1 )  

Assume now the E~,..., EN are given by a Poisson process starting from the 
origin and having parameter normalized to 1. Then we have for the joint 
probability density that the ith root has the value z~, 

D(E1 ... EN) 
P ( z 1  " ' ' Z N ) =  O ( Z l  ...ZN) e F~N (3.12) 

where D(E1... EN)/D(Zl... ZN) is the Jacobian of the transformation (3.11 ). 
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To compute the Jacobian D(E~... EN)/D(zl... ZN), we use the identity 

D(E1...EN) D(F,...FN)/D(z,...zN) 
D(z~... ZN) D(F,... FN)/D(E,'" EN) 

(3.13) 

which leads to 

D(E, ... EN) [I, <~,<j<~u l(Zi- Zj)] 
= (3.14) 

D(zl "''ZN) 1-II<~i<j~N I(Ei-Ej)I 

We note that D(F,...FN)/D(z, "''ZN) is nothing but the welt-known 
Vandermonde determinant; D(F, ... FN)/D(E1 . . .  EN) can also be evaluated 
when one realizes that the corresponding matrix contains rows which are 
linear combinations of rows of a matrix which has again the Vandermonde 
form. 

Summarizing these results, we find that the joint distribution of roots 
of the function ~N(Z) is given by 

P(Zl'"ZN)-- Hl~<i<j~N[(Zi--z/)[ e eU (3.15) 
I-II~<,<j~< N q(Ei-- Ej)[ 

Hence we have proven the" following result. 

Proposition 5. Let 

~N(Z) = ~--Z E ~ + I  ' z e C  
n = l  

where E, are the eigenvalues of/q0, wi th / lo  being the Hamiltonian of the 
quantum mechanical system defined in Section 2, whose classical counterpart 
is integrable. Assume En, n =  1 ..... N, are Poisson distributed with 
parameter 1. Then the joint distribution P(z,,..., ZN) of the roots of ~N is 
given by 

", Y[I<~i<j<~N [(Zi--Zj)] p ( Z I . . . Z N  ) . . . . .  e - -EN 
I~I~<j~<N I(Ei- Ej)I 

Remark. From Proposition 4, the zeros of ~(z) coincide with the 
eigenvalues of the perturbed Hamiltonian/I~. Since ~N(Z) ~ ~(Z), the roots 
of ~N given in Proposition 5 yield information on the zeros of ~(z), hence 
on the eigenva]ues of the perturbed Hami]tonian/1~. Comparing this result 
with the predictions of the RMT, we see that the distribution we found 
does not coincide with the one expected from RMT, which should be a 
Wishart distribution. (11) 
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4. 

r 

defined by [see (2.15)] 

~(z)= E~--z 
n = l  

379 

A S Y M P T O T I C S  OF T H E  LEVEL S P A C I N G  D I S T R I B U T I O N  
B E T W E E N  Z E R O S  

Let zl <~z2<~ ... <~z~<<.z... be the zeros of the function ~(z), i.e., 

i e N  (4.1) 

En 
- -  - E~ + 1)  (4.2) 

Introducing si = & + l - z ~ ,  the spacings between zeros which are neighbors, 
we define the level spacing probability P(s), s ~> 0, in such a way that 

P(s) ds is the probability that si belong 

to the interval Is; s + ds], for some i e N (4.3) 

P(s) ds then also gives information about the distributions of eigenvalues 
for /4~,  according to Proposition 4. We would like to investigate P(s) for 
small s. The aim is to show that 

CIS~ P(s) <~ CeS (4.4) 

for all s ~< So, for some So > 0, where c j, c2 are constants. 
It is clear that ~s P(s) ds >i SB P(s) ds, where ~B P(s) ds is the probability 

to find three poles within the closed interval B (since if we have three poles 
in B, then we have surely at least two zeros in B-- the  zeros lying between the 
poles). This implies P(s) >1 P(s). The poles En are, however, by assumption, 
Poisson distributed, and hence 

/3(s) = s.  e s (4.5) 

We have therefore the asymptotic estimate for s ~ O: 

P(s) ~> s. e - "  = P(s) (4.6) 

The next step is to give an estimate the other way around, namely that 

P(s)<<.k.s as s~0 (4.7) 

with k being some positive constant. In order to do this, we will investigate 
the probability hat two zeros are contained in an interval of length s. It is 
clear that if two zeros are contained in this interval, then at least one pole 
is also contained there (since between two zeros there is exactly one pole). 
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We will denote this pole by E,o and place it in the center of the interval. 
Our aim is to estimate the quantities 

A+ = E n o -  Z,, o 

A _  = Zno+ l -  Eno 

In order to do this, we write ~(z) as 

(4.8) 

with 

1 
r +~(~)  

Eno -- z 
(4.9) 

Eno + ~ ( 1 E,, ) 
~(z) - 2 

En0+l n ~ o  E , - - z  E 2 + l  
(4.1o) 

It is reasonable to decompose ~'(z) into the positive and negative parts 

~'(z) : ~ + ( z ) -  ~_(z)  (4.11 

with ~+(z) defined by 

En 

Eno ( 1 
~_(z)= E~2+ 1 e ~ :  E n - - z  

Using this definition, we find 

- - - -  2 En ) 
E,, + 1 

(4.12) 

1 
~+ : - ; ( z . 0 ) : ~  (Z,o)- ~ +(zo0) ~< ~_(z~0) ~< ~_ 

Zj:'~(Zno+l):~+(Zno+l)--~_(Zno+l)~+(Zno+l)~+ En-~--~ 
(4.13) 

(Here we used the fact that ~+ and ~_ are monotonically increasing/ 
decreasing functions, respectively, which can be easily verified by taking 
derivatives, exploiting uniform convergence of the series defining ~+ .) 

Hence 
1 

_~ (E,o - s /2)  
(4.14) 

1 
A >~ 

+ ( E ,  o + s/2)  
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and we can write for the level spacing 

1 1 
G o + l - z n 0 = d + + A  >~ (Eno_s/2)q 

For the probabilities we find 

P{z~o+,- Zno-< s} :e{~+ +~_ ~ }  

{ ' , 
<~P ~+(E,,o+s/2) + 

~+(Eno + S/2) (4.15) 

(Eno_S/2)<~s} (4.16) 

From the assumption on the E, that they be Poisson distributed, we have 
that the variables r + and ~_ are independent (the corresponding sums run 
over different indices). There exists a value So, depending on no, such that 

only if 

1 1 
~> - ( 4 . 1 8 )  

G 0 + l - E n 0 - s / 2  s 
(all the other terms in the sum lead to smaller contributions), which means 

En0+ l -  E~0~< 3s (4.19) 

Therefore, using the fact that the {E~} are Poisson distributed, we have, 
for s+0 

p{~.l+ s}=P = 3s}+0(s2) (4.20) --4 f~+~.!tPfEno+l-Eno~- ~ 
Similarly, 

3 s} + O(s;) (4.21) 

The poles En are, however, given according to our assumption by a 
Poisson process and therefore 

P {~+ >~}=~ s +O(s 2) 

P ~ >~ =~s+O(s 2) 
(4.22) 
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For  the level-spacing probabili ty we get 

{ 1 + 1  } 9 s 2  r{Zno+l--Zrno~S}~r ~ ~ S  =g -t- O(S 3 ) (4.23) 

which leads to 

P(s)  ~ ]s as s ~ 0 (4.24) 

Summarizing the above estimates, we have for the level-spacing distribution 

s<~P(s)<~9s as s ~ 0  (4.25) 

Hence we have proven the following result. 

T h s o r e m  6. Assume the eigenvalues En of the Hamil tonian D o 
corresponding to the classical integrable system described in Section 2 are 
Poisson distributed. Let P ( s ) d s  be the probabili ty that some of the 
spacings z , + l - z  i between two successive zeros of the function ~(z) giving 
the eigenvalues of the interacting Hamil tonian / ~  belong to the interval 
[ s ; s + d s ] .  Then one has P(s)>>,se ", and s<<,P(s)<~ (9/4)s, as s~0.  

Remark .  The estimate" for s~,0 is in agreement with RMT.  The 
situation for s ~ oo is different. It is known that  the R M T  gives cl e - '2  
P ( s ) ~ c 2 e  -'2 for some constants cl,  c2 as s ~  oo (see, e.g., ref. 11). This 
conflicts for large s with the above estimate P(s)>~e ", which holds for 
large s. Hence, for large s the level-spacing probabil i ty certainly does not  
coincide with the one predicted by the RMT.  
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